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Summary
Disease association with a genetic marker is often taken
as a preliminary indication of linkage with disease sus-
ceptibility. However, population subdivision and ad-
mixture may lead to disease association even in the ab-
sence of linkage. In a previous paper, we described a
test for linkage (and linkage disequilibrium) between
a genetic marker and disease susceptibility; linkage is
detected by this test only if association is also present.
This transmission/disequilibrium test (TDT) is carried
out with data on transmission of marker alleles from
parents heterozygous for the marker to affected off-
spring. The TDT is a valid test for linkage and associa-
tion, even when the association is caused by population
subdivision and admixture. In the previous paper, we
did not explicitly consider the effect of recent history on
population structure. Here we extend the previous re-
sults by examining in detail the effects of subdivision
and admixture, viewed as processes in population his-
tory. We describe two models for these processes. For
both models, we analyze the properties of (a) the TDT
as a test for linkage (and association) between marker
and disease and (b) the conventional contingency statis-
tic used with family data to test for population associa-
tion. We show that the contingency test statistic does
not have a x2 distribution if subdivision or admixture
is present. In contrast, the TDT remains a valid x2 statis-
tic for the linkage hypothesis, regardless of population
history.

Introduction

The availability of microsatellite DNA polymorphisms
has made it possible to identify markers in almost any
region of the genome. This development has led to nu-
merous studies that test for association between a dis-
ease phenotype and a DNA marker at or near a gene of
interest (a "candidate" gene). The finding of an associa-
tion is taken as tentative evidence that the marker is
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linked to a disease gene, perhaps implying this role for
the candidate gene itself. Often the next step is to try to
confirm this inference by a standard test for linkage.

It is now recognized, however, that this direct test
may often fail; even when marker and disease locus are
closely linked, linkage may be undetectable in conven-
tional linkage studies (e.g., with lods or affected sib pairs
[Cox et al. 1988]). This situation is illustrated by find-
ings from the insulin gene region in insulin-dependent
diabetes mellitus (IDDM) (Bell et al. 1984), where evi-
dence from conventional linkage studies (Julier et al.
1991; Bain et al. 1992) lagged far behind evidence from
association studies (Cox and Spielman 1989; Spielman
et al. 1989).

Since population associations can occur even for un-
linked loci, a demonstration of linkage must always sup-
plement evidence from population association. But the
example of the insulin gene region and IDDM shows
that a population association may provide a more sensi-
tive test, especially in cases where linkage is difficult to
detect because the disease alleles are common and have
modest effects. Thus it would be desirable to identify
disease genes by a method that combines the advantages
of the linkage and population-association approaches.

Several such approaches have been described (Rubin-
stein et al. 1981; Field et al. 1986; Falk and Rubinstein
1987; Thomson 1988; Thomson et al. 1989; Field 1991;
Terwilliger and Ott 1992; Spielman et al. 1993; Schaid
and Sommer 1994). The methods differ in detail, but all
have the following procedure in common: they consider
alleles found in the parents of an affected offspring and,
in various ways, compare alleles transmitted-versus
alleles not transmitted-to the affected offspring.
We show here that the way in which this comparison

is carried out determines the kind of inferences that can
be drawn about the presence of linkage or of association.
Furthermore, the validity of these inferences depends on
the underlying population structure and history, in ways
that may not be obvious; this dependence is the main
subject of the present paper.

Historical Models

It is well known that population admixture and other
processes reflecting population history may give rise to
disease association even for unlinked loci ("spurious"
association). Similarly, aspects of population history
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may contribute to association between linked loci. In
order to establish that loci that exhibit association are
in fact linked, it is essential to take into account the
effect of population history and structure. In this section
we set up and analyze two multigeneration models of
population history and subdivision; from these we will
deduce properties of several statistics designed to test
for linkage and for association between disease and
marker loci when population subdivision is present. (We
use "subdivision" broadly for the effects of stratification
and population heterogeneity, as well as for actual sepa-
ration into distinct subpopulations.) There are of course
infinitely many possible models of population subdivi-
sion. We chose simplified models whose properties are
clear-cut, which will allow us to make comments
applying to more realistic cases.
We assume, for simplicity, a recessive disease whose

genetic basis is a single susceptibility allele at a single
locus. (The analysis for more general modes of inheri-
tance-and more than one disease allele at the locus
is straightforward and will be indicated later. Models in
which multiple loci contribute simultaneously to disease
susceptibility are much more complex and are not con-
sidered here.) Specifically, we assume a disease locus
with alleles D and d, such that only DD individuals can
be affected by the disease in question. No generality is
lost in the mathematical analysis by assuming that every
DD individual must be affected, implying that the pene-
trance for this genotype is unity, so we make this as-
sumption in the analysis. We assume also a marker locus
M, with alleles M and m: the extension to more than
two alleles is discussed later also. The recombination
fraction between M and D loci is denoted 0.
Model 1, a model of "immediate admixture," is as

follows (fig. 1). In generation 0, individuals are assumed
to live in a collection of k subpopulations, with random
mating within subpopulations but no mating between
subpopulations. The relative sizes of the subpopulations
are denoted al, X2,.. . , a*. It is necessary to specify the
frequencies, in generation 0, of the four gametes MD,
Md, mD, and md in each of these subpopulations, and
these are denoted, in subpopulation i,

Xil, Xi2, Xi3, Xi4 * (1)

The frequencies pi of D and qi of M in subpopulation i
are, respectively, pi = xi1 + xi3 and qi = xi1 + xi2. The
coefficient of gametic disequilibrium 8i within this sub-
population is defined by

6i = XiXi4 -Xi2Xi3 . (2)

(Although the following usage is not universal, in this
paper we use the term "linkage disequilibrium" for asso-
ciation between loci only when the loci are in fact linked.
Association between loci not known to be linked is des-

Subpopuaion 1
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disequilbrum 81

Generaton 0 t

2 ...... ...... k

a2 ...... 0a ......a4

82 81 8k

Generation 1

Geneatbon 2
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Figure I Model 1: population structure/history-the "immedi-
ate" admixture model. Initially, mating is only within subpopulations.
Each subpopulation contributes a proportion o, to generation 1. Par-
ents of generation 2 mate at random, without regard to subpopulation
of origin, and random mating continues in succeeding generations.
For details, see text.

ignated "gametic association" (Lewontin 1988) or
"population association.")
The children of individuals in generation 0, namely

generation 1, are assumed to migrate to a common area.
The frequencies of D and M in this generation are de-
noted p and q, respectively, where

p = E aipi, q = , aiqi . (3)

(Here and throughout, all summations are over subpop-
ulations.) There will also exist in generation 1 a coeffi-
cient of gametic disequilibrium A1, defined in a manner
analogous to equation (2) and determined in part by the
various 8i values and in part by the admixture process
(so that, even if all the 8i are zero, this coefficient will
usually not be zero).
The members of generation 1 mate at random, with-

out regard to the subpopulation origin of their mates.
The population consisting of their children, namely gen-
eration 2, will have the same gene frequencies (3) as
their parents. However the coefficient of gametic dis-
equilibrium in generation 2, denoted A2, is (from stan-
dard population genetics theory) A2 = A1(1 - 0) and, as
with A1, will contain a component due to the admixture
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tions. Generation 3 thus consists of the offspring of both
groups. This consistent migration is maintained in all
future generations, so that a fixed fraction of the chil-
dren in any generation have as their parents immediate
immigrants from the separate subpopulations.
We regard model 2 as being more relevant from a

real-world point of view. However, examination of the
properties of various statistics discussed below is more
straightforward in model 1, so we give full details of
the analysis for that case and only quote corresponding
results for model 2.

Statistical Notes

It is assumed that the sample of affected children is
taken from the common mating area. We will examine
later properties of various statistics proposed for testing
specified genetic hypotheses. To do this, we note several
points of statistical theory. First, to be a valid X2 (with
1 df), a statistic must be of the form

Generation 4, etc.

Figure 2 Model 2: population structure/history-the "grad-
ual" admixture model. Initially (generation 0), mating is only within
subpopulations. The proportion of generation 1 contributed by each
subpopulation is cy. The members of generation 1 mate randomly and
contribute to generation 2, but unmixed descendants of the founder
populations also contribute to generation 2. This pattern continues
through succeeding generations, so that each generation has some
parents who are immigrants from the current generation of the sepa-
rate subpopulations.

process. We assume that individuals in generation 2 also
mate at random in the common area, giving rise to gen-
eration 3. In our model, generation 2 is the first genera-
tion of parents whose genotype frequencies are in
Hardy-Weinberg proportions, since it is the first genera-
tion produced by random mating throughout the popu-
lation sampled. Individuals in generation 3 mate at ran-
dom to produce generation 4, and so on.
Model 2 is one of "gradual admixture" (fig. 2). As in

model 1, individuals in generation 1 move to a common
mating area and mate at random there. The coefficient
of gametic disequilibrium A1 among these individuals is
the same as that for model 1. In contrast to model 1,
however, their offspring are joined by offspring of fur-
ther immigrants who have mated previously within their
own subpopulations, so that the individuals in genera-
tion 2 consist of offspring from both groups. The coeffi-
cient of gametic disequilibrium A* is now a function of
A1 and the parameters describing the genetic composi-
tion and contributions from the initial subpopulations.
In the next generation, individuals in generation 2 in the
common mating area mate at random, and (as in the
previous generation) their offspring are joined by those
of further immigrants from the separate subpopulations
who have mated previously within those subpopula-

(X -_Y)2/Var(X - Y), (4)

where X and Y are random variables having the same
mean under the null hypothesis being tested, and Var(X
- Y) is the variance (or, in practice, an unbiased estimate
of the variance) of X - Y. The validity of any statistic
that is claimed to be a x2 under a certain hypothesis
is checked by assessing whether these requirements are
satisfied. (Strictly speaking, we also require X and Y
to have normal distributions, but, in view of the close
approximation of the normal to the binomial, we do
not insist on this requirement. An exact binomial proce-
dure may also be used, as indicated by Spielman et al.
[1993].)

Second, consider a set of 2n (multinomial) trials, with
four possible outcomes, having respective probabilities
x, y, y, and z (x + 2y + z = 1), on each trial. If a, b, c,
and d are the numbers of outcomes in the four catego-
ries, then Var(b) = 2ny(1 - y), Var(c) = 2ny(1 -y),
and Cov(b,c) = -2ny2. Thus the variance of b -c,
found from the standard formula Var(b - c) = Var(b)
+ Var(c) - 2Covar(b,c), is 4ny. Since b and c both have
mean values 2ny, an unbiased estimator of this variance
is b + c. Except for one special case, this is the "best"
(minimum variance unbiased) estimator of the variance
of b - c and is thus, except for this special case, the
estimator that we use.
The one case in which b + c is not the "best" estimate

of the variance of b - c occurs if the probabilities x, y,
and z are all functions of some single parameter q. In
this case a, b, c, and d can be used to find the maximum-
likelihood estimate of q, and from this we can find the
maximum-likelihood estimate of the variance of b - c
as a function of q. Under the optimality theory of maxi-
mum-likelihood estimation, this is the "best" estimator
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Table I

Numbers of Marker Alleles M and m among n, Affected
and n2 Unaffected Controls in Random Samples
of Unrelated Individuals

M m Total

Affected ......... xl 2n1 - xi 2n,
Control ......... x2 2n2-X2 2n2

of the variance of b - c. If x, y, and z are each functions
of two parameters q and r, finding the maximum-likeli-
hood estimators of q and r and from this estimating the
variance of b - c will result in the same estimate (b
+ c) as that found above. If x, y, and z are functions of
three or more parameters, individual maximum-likeli-
hood estimation of these parameters is in general impos-
sible, and the only way to estimate the variance of b - c

is by using b + c. The first and third of these cases will
occur in the discussion below.

Tests for Association and Linkage

The Population-Association Statistic
Various statistics have been proposed to test for dis-

ease association in populations. The prototype for this
procedure is one that we call the "relative risk" (RR)
statistic, calculated as follows. A sample of n1 affected
and n2 control individuals is taken, and the total number
of M genes in both groups is counted, leading to the
data in table 1. The RR (or contingency) statistic for
association between disease and marker allele status,
when these data are used, can be written in the form
(x1/2n, - x2/2n2)2/Den , where Den is a denominator
term that is not important to our discussion. Suppose
first that the affected individuals are taken from genera-

tion 1. Then the mean value of x2/2n2, (the sample fre-
quency of M among controls), is, for all practical pur-

poses, the population frequency q, given by equations
(3), while the mean value of x1/2n1 is [freq(MMDD)
+ freq(MmDD)]/[freq(DD)], the frequencies being
taken from the individuals in generation 0. Since any

individual in this generation has received his genetic
makeup from two parents from the same subpopulation,
and since the frequencies of the gametes MD and mD
among the offspring of individuals in subpopulation i
are, respectively, xi1 - 06i and xi3 + 06,, the mean value
of x1/2nj is

ai[(xil - 06i)2 + (Xil - 08i)(Xi3 - 061)]}/X aipl2

[I, ai(xi,- 06)Pil]/ aipi2

{t, ai[piqi + (1 - 0)6i]pi}l/ aip?.-

The mean of x1/2n, - x212n2, the function that is
squared in the numerator in the RR statistic, is thus

[(X, aip~qj) - q(X, aip2)]/(Y aipi)

+ (1 - 0)(X, aipi6i)/(X aiph)

The first term in formula (5), which does not contain
Si, represents a "spurious" association between marker
and disease gene frequencies that is due solely to the
admixture process; the second term derives from associ-
ations in the original subpopulations, as measured by
the various 6i values. It is because of the inclusion of
the spurious association that the population-association
statistic is not an appropriate test of the hypothesis of
no association in subdivided populations. (This com-

ment also applies when the affected children are taken
from generation 2 or from generation 3.) Note also that,
even if no such spurious association exists, the second
term is not necessarily zero when 0 = 1/2, so that the
statistic does not test directly the "no linkage" hypothe-
sis 0 = 1/2. We do not, of course, expect the test to do
this, since it is purely a test of association.

The Within-Family Contingency Statistic and the TDT
There is a direct analogue, for within-family data, of

the population RR contingency statistic discussed above.
This may be called the "HRR" (haplotype relative risk)
or "contingency" statistic, since it uses the same within-
family data as does the "haplotype relative risk" mea-

sure proposed by Falk and Rubinstein (1987). The con-

tingency statistic compares the frequency of the allele M
among parental alleles transmitted to affected children
versus the frequency of the allele M among alleles not
transmitted to affected children. (The same statistic has
been called the "AFBAC," by Thomson [1988] and is
discussed in detail by Thomson [1995].) It is calculated
by using the data in table 2, deriving from the 2n genes
transmitted to n affected children by their parents and
from the 2n genes not transmitted by these parents.
The standard contingency statistic calculated from the

values in this table is

4n(w - y)2/[(w + y)(4n - w - y)]

Table 2

Marker Alleles M and m among the 2n Transmitted and 2n
Nontransmitted Alleles in Parents of n Affected Children

(6)

M m Total

Transmitted ............... w 2n - w 2n
Nontransmitted ......... y 2n - y 2n

Total ............... w + y 4n - w - y 4n
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Table 3

Combinations of Transmitted and Nontransmitted Marker
Alleles M and m among 2n Parents of n Affected Children

NONTRANSMrIrED
ALLELE

TRANSM~r[ED
ALLELE M m TOTAL

M
.......

a b a+b
m ........c d c+d

Total ....... a + c b + d 2n

As in the work of Spielman et al. (1993), it is convenient
to rewrite the data in table 2 in the form given in table
II of Ott (1989). This is done in our table 3. Here we

focus on the 2n parents (rather than on the 4n parental
genes) and describe each parent in terms of both the
marker allele transmitted to the affected child and the
allele not transmitted. The key relation between the val-
ues in table 3 and those in table 2 is that w = a + b and
y = a + c. This implies that, in terms of the quantities in
table 3, the contingency statistic (6) is

4n(b - c)21[(2a + b + c)(b + c + 2d)] . (7)

We discuss in some detail below the circumstances under
which this statistic may be used as a valid x2 test statistic
for association between disease and marker loci.
On the other hand, Spielman et al. (1993), focusing

on linkage rather than on association, proposed a statis-
tic to test formally the (null) hypothesis 0 = '/2 for
marker and disease loci. This is the TDT (transmission/
disequilibrium test) statistic

(b -_c)21(b + c), (8)
and, as might be expected of a test statistic for linkage,
uses data only from heterozygous (Mm) parents.

The Effects of History and Admixture

We now discuss which hypotheses the contingency
statistic (7) and the TDT statistic (8) could test in the
context of population subdivision and admixture. We
show below that the properties of these two statistics
depend on which of our two models is appropriate and,
in the case of expression (7), on how many generations
of random mating have occurred before the sample is
taken. To demonstrate these properties, we consider, in
turn, the cases where the affected individuals sampled
come from generations 1, 2, 3, and 4, both in model 1
and in model 2.

Scenario I

In this scenario the affected offspring come from gen-

eration 1 (fig. 1). Consider the event that a parent trans-

mits an M allele to an affected child and does not trans-
mit an m allele. The probability of this event is as fol-
lows: P(M transmitted, m not transmitted, child
affected)/P(child affected). In the numerator we have the
event that the parent is Mm at the marker locus, passes
on an MD gamete to the child, and does not pass on an
mX gamete (where X can be either D or d) and that the
other parent transmits a D allele. The desired probabil-
ity, P(b), is given by

P(b) = ( CA[xi1xi3 + xiX1i4(1 - 0)

+ Xi2Xi30]pPi( cip) (9

= (E o[pjqj(1 - qj)
+ 6i(l - 0 - qj)]pjj/(j aip?) .

The mean value of the quantity b in table 3 is therefore
2nP(b). Similarly the mean value of c is 2nP(c), where

P(c) = (E, aj[pq(1 - qj) (10)
+ 6i(0 - qj)]pj/1(Y aip?) .

These values allow us to calculate the mean value of b
- c, the term whose square appears in the numerator
of both expression (7) and expression (8). From equa-
tions (9) and (10), the mean of b - c is inferred to be

2n(1 - 20)(X ocjpjj)/(X aiP) * (11)

The expression (11) is zero only when 0 = 1/2 or Iaipii
= 0 (or both). Thus the only hypotheses that are candi-
dates for testing by expression (7) or expression (8) are
the linkage hypothesis 0 = 1/2 (which we denote H(0))
and the association hypothesis Xcxjpj6j = 0. The latter
hypothesis is of no direct interest and, in practice, would
normally be replaced by the more interesting hypothesis
6i = 0, (i = 1,2, ..., k), which we denote H(8). Note
that, in contrast to the corresponding population expres-
sion (5), the expression (11) contains, in this scenario,
no spurious association term and, further, is zero when
disease and marker loci are unlinked. Thus the "within-
family" data in table 3 potentially enable us to test, in
this scenario, simultaneously for association arising in
the original subpopulations (uncontaminated by any as-
sociation due to admixture) and for linkage between
disease and marker loci.
To arrive at a test of the linkage hypothesis H(0) in

the form of equation (4), we must calculate the variance
of b - c when 0 = 1/2. To do this, we note that, when
0 = 1/2, the marker alleles transmitted from two hetero-
zygous parents to the same child are independent (Spiel-
man et al. 1993), as are the marker alleles transmitted
by a heterozygous parent to two affected offspring.
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Thus, when 0 = 1/2, the data in table 3 come from a
multinomial distribution with four cells, in which the
probabilities of the cells corresponding to b and c are
equal when H(O) is true. The variance of b - c is thus
found from the statistical notes above, together with the
expressions (9) and (10), for P(b) and P(c), respectively,
to be

Var(b - c) = 4n E oi[piqi(l - qi)

+ 8i(1/2 - qi) ]pilXap:i
This is a function of many unknown parameters and
thus, from the statistical notes, can only be estimated
by b + c. This leads to the TDT statistic (8) as a valid test
statistic for the hypothesis H(O) of no linkage between
disease and marker loci.
We now consider the hypothesis H(8). Under this hy-

pothesis, the probabilities of the cells corresponding to
b and c are again equal, so that the appropriate numera-
tor in any proposed test statistic for this hypothesis is
(b - c)2. However, two distinct problems arise with
finding an unbiased estimator of the denominator of the
statistic, which we now discuss in detail.

First, suppose, for simplicity, that all families in the
sample are "simplex" (i.e., there is only one affected
offspring in each family). Then the multinomial distribu-
tion discussed above is appropriate, and expressions (9)
and (10) show that, when H(6) is true, the variance of
b - c is

Var(b - c) = 4n E aipiqi(l - qi)l/, aip?. (12)

As with the test of H(O), this is again a function of many
parameters and again can be estimated only by b + c.
Thus, provided that the sample contains only simplex
families, the TDT is the valid test statistic for H(s) also.
Note that the denominator in the contingency statistic

(7) is not appropriate, since (as we note later) this de-
nominator is calculated under the assumption of Hardy-
Weinberg frequencies, which, as shown by the Wahlund
principle, do not hold in our subdivided population.
This principle shows that the Hardy-Weinberg variance
4nq(1 - q) exceeds the true value (12), so that the de-
nominator in the contingency statistic (7) overestimates
the true variance. As a result, use of this statistic underes-
timates the correct x2 for testing H(6); that is, it leads
in scenario 1 to an inexact conservative test (as we con-
firm later in the Numerical Examples section).

Second, apart from this problem, when H(8) is true
the marker alleles transmitted by a parent to two af-
fected children are not independent, thus invalidating
the multinomial assumption implicit in the denominator
of the contingency statistic (7). In this case, estimation
of the variance term appears to be very difficult, and

there is possibly no simple test of the hypothesis H(6).
Note that this problem does not arise in the testing of
H(O), since the transmitted marker alleles are indepen-
dent under this hypothesis. In scenario 1, there is no
difference between models 1 and 2, so the remarks above
apply also for model 2.

Scenario 2
Here the affected individuals come from generation

2. The properties of the sampling process now depend
on the model analyzed, and, for simplicity, we carry out
a detailed analysis only for model 1. In this model, each
parent (in generation 1) of an affected child derived all
his or her genetic material from one or other of the
original subpopulations. This implies that, in computing
the scenario 2 analogues of expressions (9) and (10), we
should replace, for those (generation 1) parents deriving
their genetic material from subpopulation i, the four
gametic frequencies xi1, ..., x,4 by values updated by
one generation, namely xi, - 06i(j = 1,4) and xi, + 0,i(j
= 2,3). Calculations similar to those leading to expres-
sions (9) and (10) then give, for this scenario,

P(b) = { ai[piqi(l - qi)

+ (1 - 0)ai(l - 0 - qi)]}/p

P(c) = {X, ai[piqi(l - qi)

+ (1 - O)Si(0 - qi)]D/p

(13)

(14)

so that the mean value of b - c is now

2n(1 - 20)(1 - 0) Y aiciIp. (15)

Clearly, as in scenario 1, this is zero if and only if H(O)
or H(6) is true (or both). (As in scenario 1, we use H(6)
for the interesting case 6i = 0, (i = 1, . . ., k).)
We now discuss how these hypotheses may be tested

in this scenario. Consider first the hypothesis H(O). As
in scenario 1, the variance of b - c is a complicated
function of many parameters, and the only unbiased
estimate of the variance of b - c is b + c. This leads
once more to the TDT statistic (8) as the valid X2 test
of the hypothesis H(O). If there is one affected child per
family, then, under the hypothesis H(6), the variance of
b - c is also a complicated function of many parameters.
By the same argument as that used in scenario 1, the
correct test statistic for H(6) is, once more, the TDT;
the contingency statistic (7) is again not a valid X2. If
the data contain multiplex families, then, as in scenario
1, it appears very difficult to find any valid test of H(6).
The details of the analysis are slightly different in

model 2 (gradual admixture), with slight changes to
equations (13)-(15). However, the broad conclusions
reached for model 1-in particular, that the TDT statis-
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tic is a valid test of H(0) and that the contingency statis-
tic (7) is not a valid X2 continue to hold for model 2.

Scenario 3
Here the affected individuals are from generation 3.

In model 1 the individuals in generation 2 were pro-
duced by random mating, so that the population as a
whole exhibits Hardy-Weinberg genotype frequencies
q2, 2q(1 - q), and (1 - q)2 at the marker locus, where
q is defined in equations (3). However, the genotype
frequencies of parents of affected children are not gener-
ally in Hardy-Weinberg form. The frequencies P(a),
P(b), P(c), and P(d) are

P(a) = q2 + qA2/p (16)

P(b) = q(1- q) + (1 - 0 - q)A2/p, (17)
P(c) = q(1 - q) + (0 - q)A2/P, (18)

P(d) = (1 - q)2 _ (1 - q)A2/p, (19)

as given by Ott (1989). Here A2 is the coefficient of
gametic disequilibrium in the parental generation and
contains a component from the admixture process.
Equations (16)-(19) show that genotype frequencies of
parents of affected children are in Hardy-Weinberg form
if A2 = 0 but not if 0 = 1/2. From probabilities (17) and
(18), the mean value of b - c is inferred to be

2n(1 -20)A2/p, (20)

and this is zero when 0 = 1/2 (i.e., H(0) is true) or when
A2 = 0. Thus the only two hypotheses that can poten-
tially be tested by expression (7) or expression (8) are 0
= 1/2 and A2 = 0. The hypothesis H(0) is, as in previous
scenarios, still of major interest. In contrast, the hypoth-
esis A2 = 0 might not be of much interest, since A2
contains (perhaps substantial) spurious components
from the admixture process. We consider the test of this
hypothesis below.
Under H(O), P(b) and P(c) are functions of three un-

known parameters (A2, p, and q), and the statistical
notes above show again that the only unbiased estimator
of the variance of b - c is b + c. Thus, as in scenarios
1 and 2, the TDT statistic (8) is the valid x2 test of the
hypothesis H(0).

Clearly, the power of the TDT test depends on A2,
one component of which derives from admixture. Thus,
not only is the TDT statistic valid under population
subdivision and admixture, it is actually made more
powerful by the admixture process. We illustrate this
below, with a numerical example.
We next consider the test of the hypothesis A2 = 0-

Under this hypothesis, the probabilities (16)-(19) de-
pend only on q; as a result, the estimator of the variance
of b - c will not be the same as that used in the testing

of H(0). When there is only one affected child in each
family in the sample, the various observations are inde-
pendent and the multinomial distribution applies. The
variance of b - c is therefore 4nq(1 - q), the maximum-
likelihood estimator of q is (2a + b + c)/4n, and thus
the estimate of the variance of b - c is (2a + b + c)(b
+ c + 2d)/4n, as in expression (7). It follows that, in
scenario 3 with simplex families, the contingency statis-
tic (7) does provide a valid X2 test for the hypothesis A2
= 0-and that it actually has slightly greater power
than the TDT, since the former makes use of all the
data.
When some families in the sample have more than

one affected child, the multinomial assumption is no
longer valid and there does not appear to be any obvious
test, which uses all the data, of the hypothesis A2 = 0.
It is therefore possible, in this scenario, to form valid
tests for both linkage (0 = 1/2) and, when there is only
one affected child in each family, association (A2 = 0).
As we remarked above, however, the hypothesis A2 = 0
might not be of much interest. Accordingly, one might
be tempted in this case to use the contingency statistic
(7), not as a test of association but as a test of linkage,
treating this statistic as though it were a valid x2 under
H(O). The rationale would be that, apart from statistical
fluctuations, the contingency statistic (7) can attain sig-
nificance only if marker and disease loci are linked.
However, this procedure is not valid, since this statistic
does not have a x2 distribution when H(O) is true; when
H(0) is true, the parental probabilities (16)-(19) differ
from those when A2 = 0. Consequently, sampling is
from two different background distributions in the two
cases, implying that the contingency statistic (7) is not
valid as a test for linkage. We confirm this conclusion in
example 2 described in the Numerical Examples section
below.
The corresponding conclusions in model 2 are more

straightforward. Hardy-Weinberg frequencies have not
been attained among the members of generation 2-
and, in particular, among parents of affected children.
Transmission frequencies more complex than those in
probabilities (16)-(19) apply, and the most important
implication of this is that the contingency statistic (7) is
not a valid X2 as a test of association. On the other hand,
TDT statistic (8) is a valid X2 as a test for linkage.
Scenario 4
Here the affected children are taken from generation

4. The admixture process, in both models, reached a
"steady state" in scenario 3, so that properties of sce-
nario 4 are very similar to those of scenario 3. All the
conclusions reached above for scenario 3 continue to
hold, for both models, in scenario 4. The main quantita-
tive difference will arise from a decreased coefficient of
association due to recombination, and the effect of this
will be to decrease both statistics (7) and (8) to approxi-
mately (1 - 0)2 of their scenario 3 values.
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Table 4

Values of Contingency Statistic (7) and TDT x2 (8),
Corresponding to Expected Values of the Observations
(see Text)

MODEL 1 MODEL 2

Contingency TDT X2 Contingency TDT x2
GENERATION Statistic (7) (8) Statistic (7) (8)

1 ....... 1.30 1.48 1.30 1.48
2 ....... 1.63 2.07 1.48 1.83
3 ....... 16.30 15.34 8.26 8.53
4 ....... 13.06 12.43 6.69 6.99

Numerical Examples

We confirm the main points made in the above discus-
sion, by two numerical examples.

Example I: Properties of the Contingency Statistic and the
TDT When Both Association and Linkage Are Present
Power and Validity

Suppose that in generation 0 there are two subpopula-
tions, of equal sizes. In population 1 the gametic fre-
quencies (1) are .68, .12, .12, and .08, while in popula-
tion 2 they are .08, .12, .12, and .68. (The values chosen
are not meant to be realistic but simply to illustrate the
model.) Thus Pi = q, = .8, 61 = .04, P2 = q2 = .2, and
62 = .04. The recombination fraction 0 is assumed to
be .1. The admixture processes for models 1 and 2 are

as described in the above sections; in model 1, admixture
is immediate, whereas, in model 2, we assume that 20%
of the individuals in any generation are new immigrants
from the original subpopulations.

Suppose first that 100 affected individuals, all from
different families, are taken from generation 1 (i.e., sce-

nario 1). When expressions (9) and (10) and similar
expressions for P(a) and P(d) are used, the mean values
of the quantities a, b, c, and d in table 3 are found to
be 128.94, 34.59, 25.18, and 11.30. If the observed data
take these mean values, the contingency statistic (7) and
the TDT statistic (8) take the values shown in line 1
of table 4. By conventional criteria for significance (X2
= 3.84, df = 1) the TDT does not detect the linkage (or
the association) between the two loci, essentially because
the genetic material in each affected individual comes

from within one or the other subpopulation, where the
coefficient of association is small. The relative values of
the statistics (7) and (8) also illustrate the conservative
nature of the (incorrect) statistic (7) as a test for H(8),
as predicted above for scenario 1.

Suppose next that the 100 affected individuals are

taken from generation 2 (scenario 2). For model 1, the
mean values of a, b, c, and d are found from equations
(13) and (14) and similar expressions for P(a) and P(d).

If the observed data take these mean values, the associa-
tion statistic (7) and the TDT statistic (8) are as shown
in table 4 (line 2). Similar values are found for model 2.
The TDT does not detect the linkage (or the association)
between the two loci under either model, again because
the associations that it uses are still the small values
in the original subpopulations. As in scenario 1, the
contingency statistic (7) is too conservative as a test
of H(8).
The coefficient of gametic association A2 within gener-

ation 2 is .1134, far larger than the value 6 = .04 in the
original subpopulations. This increase is derived largely
from the admixture process, and the large value will
become relevant in the testing procedure when affected
individuals come from generation 3.

Suppose next that the 100 affected individuals come
from generation 3 (scenario 3). If, once again, the ob-
served data take the corresponding mean values, the
contingency statistic (7) and the TDT statistic (8) are as
shown, for both models, in table 4 (line 3). The TDT
statistic is now significant, in both models, detecting the
linkage (and the association) between the two loci. Its
power to do this derives largely from the admixture
process and the gametic association that this process
generates. The value in model 2 is rather less than that
in model 1, since some individuals in this model are
recent immigrants and the increased association due to
admixture is not relevant to them.

In generation 3, in contrast to the preceding cases,
the contingency statistic (7) is a valid X2 for testing the
hypothesis A2 = 0 in model 1. It is significant and thus
has detected the association between the loci. The value
of the contingency statistic slightly exceeds that of the
TDT statistic, illustrating its slightly greater power as a
test of the hypothesis A2 = 0. As discussed above, how-
ever, the contingency statistic should not be used as an
indirect test statistic for linkage, since contingency statis-
tic (7) does not have the nominated type I error as a test
of the hypothesis 0 = 1/2. (See example 2 and comments
after eq. [20] above.) In the more realistic model 2, the
contingency statistic is not a valid x2 test for any hypoth-
esis, and, as in scenario 1 and 2, its value is less than
that of the valid X2 statistic (8).
The properties of scenario 4 (table 4, line 4) are

similar to those of scenario 3, as predicted above. The
main numerical effect is that the coefficient of gametic
association has decreased by 10%, from .1134 to
.1021, and, as a result, the values of both contingency
statistic (7) and x2 statistic (8), in both models, have
decreased to about (1 - 0.1)2, or 81% of their values
in scenario 3.

Example 2: Properties of the Contingency Statistic and TDT
When Association Is Present but linkage Is Not Type I Error

In the second numerical example, we examined the
properties of the contingency and TDT statistics when
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Table 5

Frequency (%) with Which Contingency (7) and TDT (8) Test
Statistics Exceeded 5% Value (3.84) of X2 with df = I,
in Simulations with 9 = '/2 (Scenario 3, model 1)

Gametic
Disequilibrium Contingency Statistic (7) TDT x2 (8)

A2 ± Standard Error ± Standard Error

.010 ........ 5.66 ± .06 5.01 ± .07

.015 ........ 6.17 + .06 5.08 + .07

.020 ........ 7.09 ± .07 5.04 ± .07

.025 ........ 8.34 ± .11 5.02 ± .07

the null hypothesis (0 = 1/2) is in fact true. Here we

used simulation to check the claim, made above, that
in scenario 3, model 1 (i.e., immediate admixture), the
contingency statistic (7) does not have a x2 distribution
under the no-linkage hypothesis H(0). (At the same time
we checked the validity of the TDT statistic [8] for this
hypothesis.) We used a disease allele frequency (p) of
.05, a marker allele frequency (q) of .4, and the four
alternative values A2 = .010, .015, .020, and .025.
With each value of A2, and using equations (16)-(19)

with 0 = 1/2, we constructed by Monte Carlo simulation
a data set (a,b,cd) as in table 3, with a + b + c + d
= 1,000. We then calculated the values of the statistics
(7) and (8) for these data and noted whether the calcu-
lated value exceeded the significance value of x2, namely
3.84. This procedure was repeated 100,000 times, giving
a very accurate estimate of the true type I error of each
test statistic. The results are given in table 5.
We note that, whereas the type I error of the TDT statis-

tic never differs appreciably from the value 5%, the type I
error for the contingency statistic (7) increases steadily from
5.66% (when A2 = 0.010) to 8.34% (when A2 = 0.025),
confirming our claim that the contingency statistic should
not be used as a test for linkage. Specifically, use of contin-
gency statistic (7) will lead to more than the nominal fre-
quency (e.g., 5%) of false-positive findings. In practice, this
means that use of contingency statistic (7) will exaggerate
the apparent significance of results.

Discussion

We have analyzed two multigeneration models of
population subdivision and admixture, to show the con-

sequences for within-family tests of association and link-
age disequilibrium between genetic disease and marker
locus. Our analysis makes some simplifying assump-

tions, and we discuss several of those here.

Mode of Inheritance and Multiple Marker Alleles
It is straightforward to generalize the above analysis

to the case of an arbitrary mode of inheritance, and it
is found that the TDT is a valid test statistic whatever the

mode of inheritance. (Details are available from W.J.E.)
This does not imply that a more powerful testing proce-
dure cannot be found when the mode of inheritance
is known. Indeed, Schaid and Sommer (1994) provide
statistics analogous to the TDT that provide more pow-
erful tests than the TDT when the mode of inheritance
is known. However, even in these cases, the decrease in
power is only modest if the TDT is used. Furthermore,
if the true mode of inheritance is additive, the TDT is
the most powerful test.

Several authors have discussed generalizations of the
TDT to the case of multiple marker alleles (see, in partic-
ular, the work of Bickeboller and Clerget-Darpoux [in
press] and Rice et al. [in press]). The conclusions reached
above on the effects of admixture on the TDT will con-
tinue to apply for any such generalization.

Population Structure
The model of "immediate" admixture is obviously

unrealistic for human and most other populations, but
it highlights the aspects of admixture that are important
for understanding gametic association. Even if complete
panmixia with no further admixture (i.e., model 1) be-
gins in generation 1, the effect of admixture on marker
genotype frequencies persists in generation 2, among the
parents of affected individuals, and does not disappear
until generation 3; as a result, the contingency test of
association is not a valid x2 until generation 3. As long
as further admixture continues (model 2), the contin-
gency test is not valid.

In practice, the population structure and the migra-
tion processes affecting admixed populations will, in
humans, be far more complex than those described by
the model above. It is difficult to predict the magnitude
of the error caused by using a test that, as a result of
admixture, is not strictly valid. In some cases where
admixture is (or was) present, the error resulting from
use of the contingency statistic (7), when it is not a valid
x%2 might be small. In this regard, our tables 4 and 5
cover only a small number of possibilities.

Independence
Even if some families in the sample have more than

one affected child, the TDT remains a valid test of the
linkage hypothesis. However, the presence of multiplex
sibships makes the contingency statistic invalid as a test
of association, even if there are no problems resulting
from recent admixture.

Conclusions
We summarize our conclusions and recommendations

regarding the tests discussed above, as follows:
1. Even when the contingency statistic is valid as a test

of association, it is not valid as a test of linkage. Thus, in
model 1, scenario 3, table 5 shows that, when this statistic
is used as a test of linkage, the actual type I error will
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exceed the nominal value, leading to an excess of false-
positive results. This excess increases appreciably as the
coefficient of gametic disequilibrium increases.

2. The contingency statistic is also not valid, in gen-
eral, as a test for association, since it requires random
mating in the population and no admixture for at least
two generations before the sample of affected offspring
is taken. In practice, of course, we usually do not know
how large or how recent the admixture effects may be. In
view of the substantial admixture occurring in modern
populations, among previously separated ethnic groups,
the effects may be large.

3. There is a further difficulty with the contingency sta-
tistic; it does not provide a valid test for association when
the sample contains multiplex families, unless only one
affected child from each family is used in the analysis.

4. For the TDT, in contrast, the preceding considera-
tions do not apply. Whether association is spurious or
due to linkage (with disequilibrium), the TDT is a valid
test for the null hypothesis 0 = 1/2 (no linkage). Indeed
the power of the TDT requires-and is enhanced by-
the presence of association, whatever its cause. Further-
more, the TDT remains valid as a test for linkage even
when some families in the sample contain two or more
affected children.

5. Accordingly, when a test for linkage in the pres-
ence of association is desired, we recommend the TDT
as the test of choice.
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